首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16789篇
  免费   2948篇
  国内免费   2237篇
化学   12348篇
晶体学   307篇
力学   934篇
综合类   152篇
数学   1755篇
物理学   6478篇
  2024年   20篇
  2023年   322篇
  2022年   383篇
  2021年   564篇
  2020年   691篇
  2019年   674篇
  2018年   627篇
  2017年   569篇
  2016年   785篇
  2015年   828篇
  2014年   1055篇
  2013年   1309篇
  2012年   1492篇
  2011年   1597篇
  2010年   1184篇
  2009年   1049篇
  2008年   1207篇
  2007年   1091篇
  2006年   956篇
  2005年   842篇
  2004年   645篇
  2003年   520篇
  2002年   508篇
  2001年   401篇
  2000年   397篇
  1999年   293篇
  1998年   253篇
  1997年   211篇
  1996年   188篇
  1995年   156篇
  1994年   199篇
  1993年   145篇
  1992年   150篇
  1991年   108篇
  1990年   106篇
  1989年   100篇
  1988年   53篇
  1987年   42篇
  1986年   43篇
  1985年   35篇
  1984年   28篇
  1983年   14篇
  1982年   21篇
  1981年   12篇
  1980年   27篇
  1979年   7篇
  1976年   10篇
  1975年   8篇
  1974年   8篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
992.
The nanostructure of self-ordered porous anodic TiO2 nanotubes (PATNTs) has extraordinary influence on their physical and chemical properties. For this reason, extensive attention has been paid on pulse anodization to regulate the nanostructure of PATNT. However, the relationships between the nanostructures and current curves still remain unclear. Based on the traditional potentiostatic and pulse anodizations, five different modes (i.e., potentiostatic, pulse, triangle wave, decrease, and increase step by step) of applied voltage and their influences on the nanostructures of PATNT have been investigated in detail. The growing rates of the nanotubes anodized under five different modes were compared for the first time. The results show that the growing rate of pulse voltage anodization is the fastest, reaching 116.4 nm min?1. The slowest is triangle wave voltage anodization, only 59.3 nm min?1. When the applied voltage decreases step-by-step, branched nanotubes can be formed in the bottom of PATNT. Yet, when the applied voltage increases step-by-step, triple-layer nanotubes with different diameters are formed, and the forming mechanism of this special nanostructure is discussed. The present results may be helpful to understand the mechanism of PATNT and facilitate the assembling diverse nanostructures for extensive applications in photocatalysis, dye-sensitized solar cells, and biomedical devices.  相似文献   
993.
The charge state of the Pd surface is a critical parameter in terms of the ability of Pd nanocrystals to activate O2 to generate a species that behaves like singlet O2 both chemically and physically. Motivated by this finding, we designed a metal–semiconductor hybrid system in which Pd nanocrystals enclosed by {100} facets are deposited on TiO2 supports. Driven by the Schottky junction, the TiO2 supports can provide electrons for metal catalysts under illumination by appropriate light. Further examination by ultrafast spectroscopy revealed that the plasmonics of Pd may force a large number of electrons to undergo reverse migration from Pd to the conduction band of TiO2 under strong illumination, thus lowering the electron density of the Pd surface as a side effect. We were therefore able to rationally tailor the charge state of the metal surface and thus modulate the function of Pd nanocrystals in O2 activation and organic oxidation reactions by simply altering the intensity of light shed on Pd–TiO2 hybrid structures.  相似文献   
994.
The hydroazidation of alkynes is the most straightforward pathway to synthetically useful vinyl azides. However, a general hydroazidation of alkynes remains elusive. Herein, a chemo‐ and regioselective transformation of ethynyl carbinols into vinyl azides is described. This reaction produces a wide variety of 2‐azidoallyl alcohols with high efficiency and in good to excellent yields. These compounds constitute a new class of densely functionalized synthetic intermediates. Their synthetic potential has been demonstrated by further transformations into NH aziridines. The mechanistic aspects of the reaction will attract the attention of chemists working on alkyne chemistry and silver catalysis. The findings that are described in this paper represent significant advances in the regioselective hydroelementation of alkynes and open a new reaction manifold for exploitation.  相似文献   
995.
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein‐aggregation diseases and developing peptide‐based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein–protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation‐resistant proteins as biotherapeutics.  相似文献   
996.
997.
A practical method for the synthesis of azepine derivatives, a typical seven‐membered heterocyclic ring system, was developed and involves the use of hexafluoroantimonic acid to catalyze a formal [3+2+2] cycloaddition of aziridines with two alkynes. This method was applicable to two of the same or different terminal alkynes for the [3+2+2] cycloaddition with unactivated aziridines, and furnished the corresponding azepine derivatives in good yields with good levels of chemo‐ and regioselectivity. The mechanism was also discussed according to the results of the in situ HRMS and 1H NMR analysis.  相似文献   
998.
Two amphiphilic regioisomers, 9‐AP (1‐[11‐(9‐anthracenylmethoxy)‐11‐oxoundecyl]pyridinium bromide), and 2‐AP (1‐[11‐(2‐anthracenyl methoxy)‐11‐oxoundecyl]pyridinium bromide), were synthesized and their assembly behaviors were studied. Due to the anisotropic features of the anthracene structure, different substituted positions on the anthracene ring lead 9‐AP and 2‐AP to adapt “shaver” and “spatula”‐like molecular shapes, respectively, which consequently dictate the structure of their final assemblies. While “shaver”‐shaped 9‐AP assembled into microsheets, driven by π–π interactions, “spatula”‐shaped 2‐AP assembled into microtubular structures, promoted primarily by charge‐transfer interactions.  相似文献   
999.
The aggregation behavior of mixtures of the alkaline amino acid L ‐Arginine (L ‐Arg) and bis(2‐ethylhexyl)phosphoric acid (DEHPA) in water was studied in detail. At a fixed L ‐Arg concentration, a phase sequence of micellar phase (L1 phase), vesicle phase (Lαv phase), planar lamellar phase (Lαl phase), and sponge phase (L3 phase) was obtained with increasing DEHPA concentration due to changes in the packing parameter. The phase transition of the lamellar structures was determined by freeze‐fracture TEM and 2H NMR spectroscopy. Rheological measurements reflected the phase transition through significant variations of both the elastic modulus and the viscous modulus. Porous CeO2 materials were produced by utilizing the L3 phase as template, and the porous CeO2 exhibited excellent catalytic oxidation activity toward CO due to its high surface area, which provides more active sites for CO conversion.  相似文献   
1000.
RhIII‐catalyzed N‐nitroso‐directed C?H addition to ethyl 2‐oxoacetate allows subsequent construction of indazoles, a privileged heterocycle scaffold in synthetic chemistry, through the exploitation of reactivity between the directing group and installed group. The formal [2+2] cycloaddition/fragmentation reaction pathway identified herein, a unique reactivity pattern hitherto elusive for the N‐nitroso group, emphasizes the importance of forward reactivity analysis in the development of useful C?H functionalization‐based synthetic tools. The synthetic utility of the protocol is demonstrated with the synthesis of a tricyclic‐fused ring system. The diversity of covalent linkages available for the nitroso group should enable the extension of the genre of reactivity reported herein to the synthesis of other types of heterocycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号